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DEOS/NAVIR2ES
ISAE-SUPAERO
Toulouse, France

Eric Chaumette
DEOS/NAVIR2ES
ISAE-SUPAERO
Toulouse, France

Abstract—Intrinsic lower bounds on the intrinsic mean square
error are of major importance to characterize the best achievable
estimation performance of any unbiased estimator on smooth
manifold as Lie group (LG). When the parameter is described
by a LG model and the observation noise is with unknown
variance, it is also necessary to determine a bound both on the LG
parameter and this variance. In this communication, we propose
an intrinsic generic Fisher information matrix taking into account
this problem. To achieve that, we derive an intrinsic Slepian-
Bangs formula on the LG product of the unknown parameter
of interest and the LG of positive scalar values in which the
variance intrinsically lies. The proposed bound is validated on
a Gaussian observation model for unknown parameter lying to
SE(3) and variance noise on R+.

I. INTRODUCTION

It is well-known that the performance of Euclidean estima-
tors can be characterized through lower bounds on the mean
square error (MSE) [1]. The most popular is the Cramér-Rao
bound (CRB) [2], [3], mainly due to its tractable form, and
because it gives a precise estimation of the maximum likeli-
hood estimator (MLE) for Euclidean Gaussian model, under
some regularity conditions for large number of observations.
[4], [5].

In the last decade there has been an increasing interest in
the derivation of intrinsic lower bounds [6]–[10], where the
parameters of interest live in a Lie group (LG), a manifold of
interest, which appears in many signal processing applications.
For instance, in vision-based problems, the transformation
between two images belongs to the LG SE(3). In navigation-
based problems, the unknown attitude of a mobile lies on
SO(3). On the other hand, in several target tracking appli-
cations, the parameters of interest belong to the manifold
of Hermitian positive definite matrices [10], which can be
equipped with a structure of LG. The associated lower bound
can be obtained by minimizing an intrinsic MSE (IMSE)
preserving the geometrical structure of the LG. In particular,
in [9] [11], it is proposed an inequality on the intrinsic MSE
for LGs, and provided Cramér-Rao bound on LGs (ICRB) for
Euclidean observations with closed-form for the LG SO(3).
In [12], this bound has been formulated according to the
Barankin and McAulay-Seidman formalism [13] [14] [15] and
extended for the case where the observations can also lie on
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LGs. Especially, it is deduced an intrinsic Slepian-Bangs (ISB)
formula for Gaussian model on LGs. It is relevant in some
applications, for instance, when sensors provides orientation
measurements such as odometer [16] or LIDAR system [17].
Most of problem of estimation on LGs assume that the
uncertainty on observations is known. This hypothesis is not
true in several real-world applications. For instance, in GNSS
navigation, the Real-Time Kinematic (RTK) positioning uses
observations of phase and distance in order to estimate the
attitude in the LG SO(3) of mobile equipped with several
antennas. In this context, the noise measurements covariance
matrix can be difficult to compute due to the correlations
between observations [18]. Also, in computer vision, a camera
provides noisy pixel detections depending on the unknown
camera pose in SE(3) with noise potentially unknown because
linked to the signal to noise ratio of the observed image [19].
For all these problems, it is fundamental to obtain a lower
bound that takes into account both unknown LG elements and
unknown covariance noise. In this communication, we propose
a generalization of the ISB formula introduced in [12], in the
case where the variance for LG observation models is incorpo-
rated into the set of the unknown parameters. To achieve that,
we consider that the covariance matrix is assumed equal to an
identity matrix and multiply by an unknown scalar variance.
In this case, we can obtain a unified formalism on LGs by
using the intrinsic properties of the variance. Indeed, it is
intrinsically constrained to lie on the LG of positive real values
R+. Consequently, the unknown augmented parameter belongs
to the augmented LG G × R+. The ISB formula obtained
is then computed for Gaussian models with observations on
LG and for any augmented LG G × R+. A closed-form is
established for SE(3) × R+ and for observations lying on
R3: the resulting ICRB is numerically tested by comparison
with the IMSE.
The communication is organized as follows: in the section II,
we focus on the necessary background on LGs. In the section
III, we remind the state-of-the-art ISB formula and we derive
the proposed ISB for unknown variance parameter. Then, in
the section IV, we obtain closed-form expression validated by
numerical simulations.



II. BACKGROUND ON LGS

In this section, we revisit the properties of LG and introduce
the Lie group structure associated with R+.

A. Definition

A matrix space, denoted as LG, is a subset of Rn×n

endowed with the dual structure of a smooth manifold and
a group. The group structure imparts an internal operation
(matrix multiplication) while the smooth manifold structure
defines a tangent space at each point of G. The identity
tangent space, denoted as g, serves as the Lie algebra, where
each element is locally connected to elements of G through
the logarithmic and exponential mappings. These mappings,
denoted as ExpG : g → G and LogG : G 7→ g, are illustrated
in Figure 1.

Since g is isomorphic to Rm, two bijections are defined:
[.]∧ : Rm 7→ g and [.]∨ : g 7→ Rm, where m is the dimension
of the Lie algebra.

Expressing the exponential and logarithmic mappings, for
any a ∈ Rm, we have Exp∧G (a) = Exp ([a]∧G). Similarly, for
any M ∈ G, [LogG (M)]

∨
G = Log∨

G (M) .
For a deeper understanding of LG theory, interested readers

can explore [20], [21].

Fig. 1. Relation between Rm, G and g.

B. Lie group G× R+

The space R+ is a commutative LG equipped with the
classical multiplication law and neutral element 1. Its loga-
rithm and exponential application are given by the classical
logarithm log(.) and exponential function exp(.) respectively
defined on R+ and R.
Let us consider an arbitrary matrix LG G ⊂ Rn×n of
dimension p, equipped with the classic matrix multiplication,
and with the exponential and logarithm operator Exp∧

G (.)
and Log∨G (.) . Then, G × R+ is also a LG with matrix
multiplication where every element X(a) ∈ G×R+ is written
as:

X(a) =

[
X 0n×1

01×n s

]
∀X ∈ G, ∀ s ∈ R+, (1)

and associated to the Euclidean element a(a) = [a, as] ∈ Rp×
R. Thus, the logarithm and exponential operators on G×R+

are defined by

Log∨G×R+

(
X(a)

)
=
[
Log∨G (X) ⊤, log(s)

]⊤
, (2)

Exp∧
G×R+

(
a(a)

)
=

[
Exp∧G (a) 0n×1

01×n exp(as)

]
. (3)

III. PROPOSED INTRINSIC SLEPIAN-BANGS FORMULA

A. Remind of the intrinsic Slepian-Bangs formula

Let us assume a set of independent observations Z =
{Z1, . . . ,ZN} belonging to some LG G′ (with dimension p′)
and following a concentrated Gaussian distribution [22]:

Zi = Fi(X)Exp∧
G′ (ni) ni ∼ N (0,Σ) ∀i ∈ {1, . . . , N},

(4)
where X is the unknown parameter belonging to G (with
dimension p) and F : G → G′ is a smooth function.
The IMSE, between an unbiased estimator X̂ and X, in the
intrinsic sense [12], is given by

E = E
(

Log∨G
(
X−1X̂

)
Log∨

G

(
X−1X̂

)
⊤
)

(5)

is bounded by
PICRB = J−1, (6)

with J defined by the ISB formula [12]

J = −E

(
∂2log p

(
Z|XExp∧

G (δ1) Exp∧
G (δ2)

)
∂δ1∂δ2

)∣∣∣∣∣
δ1,δ2=0

=

N∑
i=1

LR
Fi(X)

⊤ E
(
ψ̃

⊤
i Σ

−1 ψ̃i

)
LR
Fi(X), (7)

where ψ̃i = ψG′(Log∨
G′

(
Fi(X)−1 Zi)

)
is the inverse of

the left Jacobian of G′ and LR
Fi(X) is the right Lie derivative

of Fi. For more informations on the expression of these
quantities, the lector can refer to [23].

B. Intrinsic Slepian-Bangs formula on G× R+

Now, consider the same model when Σ = σ2Ip′×p′ and σ2

is unknown. As σ2 > 0, it belongs to the LG R+, and the
unknown parameter X(a) ∈ G(a) = G× R+

X(a) =

[
X 0n×1

01×n σ2

]
. (8)

Theorem 1. The IMSE E(a) on G(a) between an unbiased
estimator X̂(a) and X(a) verifies:

E(a) ⪰ P
(a)
ICRB =

(
J (a)

)−1

J (a) =

[
JX JX,s

J⊤
X,s Js

]



with ∀ϵX1 ∈ Rp, ϵX2 ∈ Rp, ϵσ1 ∈ R, ϵσ2 ∈ R

JX =

−E

∂
2log p

(
Z|X(a) Exp∧

G(a)

([
ϵX1
0

])
Exp∧

G(a)

([
ϵX2
0

]) )
∂ϵX1 ∂ϵ

X
2


∣∣∣∣∣∣∣∣
ϵX1 ,ϵX2 =0

= J (9)

Js =

−E

∂
2log p

(
Z|X(a) Exp∧

G(a)

([
0
ϵσ1

])
Exp∧G(a)

([
0
ϵσ2

]) )
∂ϵσ1∂ϵ

σ
2


∣∣∣∣∣∣∣∣
ϵσ1 ,ϵ

σ
2=0

=
p′N

2
(10)

JX,s =

1

σ2
E
((

LR
fi(X)

)⊤
ψG′(Log∨G′

(
Fi(X)−1Zi

)
)⊤ Log∨

G′

(
Fi(X)−1Zi

))
(11)

Proof:

To begin, let us define two notations:

lp(M, ϵ) =log p(Z|X Exp∧G (ϵ) (12)
lp(X, ϵ1, ϵ2) =log p(Z|XExp∧

G (ϵ1) Exp∧
G (ϵ2)) (13)

As the unknown parameters is divided into two parts, we
can decompose J (a) as follows:

J (a) =

[
JX JX,s

J⊤
X,s Js

]
(14)

with:

JX = E

 ∂lp(X,
[
ϵX1 ; 0

]
)

∂ϵX1

∂lp(X,
[
ϵX2 ; 0

]
)

∂ϵX2

⊤∣∣∣∣∣
ϵX1 ,ϵX2 =0


(15)

Js = E

 ∂lp(X, [0; ϵσ1 ])

∂ϵσ1

∂lp(X, [0; ϵσ2 ])

∂ϵσ2

⊤
∣∣∣∣∣
ϵσ1 ,ϵ

σ
2=0


(16)

JX,s = E

 ∂lp(X,
[
ϵX1 ; 0

]
)

∂ϵM1

∂lp(X, [0; ϵσ2 ])

∂ϵσ2

⊤
∣∣∣∣∣
ϵX1 =0,ϵσ2=0


(17)

• Computation of JX :

By applying the following Slepian-Bangs formula on X, we
obtain directly:

JX = (18)

1

σ2

N∑
i=1

(
LR
fi(X)

)⊤
E
(
ψG′(Log∨G′

(
Fi(X)−1 Zi)

)
×

ψG′(Log∨
G′

(
Fi(X)−1Zi)

) ⊤)LR
fi(X) (19)

• Computation of Js:

As ϵ → log p
(
Z|XExp∧

G (ϵ)
)

is a quadratic function, we
can consider it sufficiently regular so that:

E

 ∂lp (X, [0; ϵσ1 ])

∂ϵσ1

∂lp (X, [0; ϵσ2 ])

∂ϵσ2

⊤
∣∣∣∣∣
ϵσ1 ,ϵ

σ
2=0

 =

− E
(
∂lp2 (X, [0; ϵσ1 ] , [0; ϵ

σ
2 ])

∂ϵσ1∂ϵ
σ
2

∣∣∣∣
ϵσ1 ,ϵ

σ
2=0

)
(20)

On the other hand, we know that:

∂2lp(X, [0; ϵσ1 ] , [0; ϵ
σ
2 ])

∂ϵσ1 ∂ϵ
σ
2

∣∣∣∣
ϵσ1=ϵσ2=0

=

∂2

∂ϵσ1 ∂ϵ
σ
2

(
−N

2
log
(
σ2 exp (ϵσ1 ) exp (ϵσ2 )

)
−

1

2

N∑
i=1

Log∨G′

(
Fi(X)−1Zi

) ⊤(σ2 exp (ϵσ1 ) exp (ϵσ2 ))
−1

Log∨
G′

(
Fi(X)−1Zi

)
(21)

and can be simplified in the following way:
• first, it is straightforward that:

∂2

∂ϵσ1 ∂ϵ
σ
2

log
(
σ2 exp (ϵσ1 ) exp (ϵσ2 )

)∣∣∣∣
ϵσ1 ,ϵ

σ
2=0

= 0 (22)

• second, we show that:

∂2

∂ϵσ1 ∂ϵ
σ
2

(σ2 exp (ϵσ1 ) exp (ϵσ2 ))
−1

∣∣∣∣
ϵσ1 ,ϵ

σ
2=0

=
1

σ2
(23)

Consequently, we obtain:

∂2lp (X, [0; ϵσ1 ] , [0; ϵ
σ
2 ])

∂ϵσ1 ∂ϵ
σ
2

∣∣∣∣
ϵσ1=0,ϵσ2=0

=

− 1

2σ2

N∑
i=1

tr (Log∨G′

(
Fi(X)−1Zi

) ⊤Log∨
G′

(
Fi(X)−1Zi

)
)

(24)

and:

E
(
∂2lp (X, [0; ϵσ1 ] , [0; ϵ

σ
2 ])

∂ϵσ1 ∂ϵ
σ
2

∣∣∣∣
ϵσ1=ϵσ2=0

)
=

− 1

2σ2

N∑
i=1

tr(E(Log∨G′

(
Fi(X)−1Zi

)
Log∨G′

(
Fi(X)−1Zi

) ⊤)



As:

E
(
Log∨

G′

(
Fi(X)−1Zi

)
Log∨

G′

(
Fi(X)−1Zi

) ⊤) = σ2I;
(25)

we finally obtain that Js =
p′N

2
.

• Computation of JX,s:

In the same way as previously, if ϵ →
log p

(
Z|XExp∧

G (ϵ)
)

is sufficiently regular, then:

E

 ∂lp(X,
[
ϵX1 ; 0

]
)

∂ϵX1

∂lp(X, [0; ϵσ2 ])

∂ϵσ2

⊤
∣∣∣∣∣
ϵX1 ,ϵσ2=0

 =

− E

(
∂2lp

(
X,
[
ϵX1 ; 0

]
, [0; ϵσ2 ]

)
∂ϵX1 ∂ϵ

σ
2

∣∣∣∣∣
ϵX1 ,ϵσ2=0

 (26)

Furthermore, as:

∂Log∨
G′

(
Fi(XExp∧

G (ϵ) )−1 Zi

)
∂ϵ

∣∣∣∣∣
ϵ=0

=

ψ′
G(Log∨

G′

(
Fi(X)−1Zi

)
LR
Fi(X) (27)

we can demonstrate that:

∂lp(X,
[
ϵX1 ; 0

]
)

∂ϵX1
=

1

σ2

(
LR
Fi(X)

)⊤
×

ψG′(Log∨
G′

(
Fi(X)−1Zi

)
)⊤ Log∨

G′

(
Fi(X Exp∧

G

(
ϵX1
)
)−1 Zi

)
(28)

Therefore, by differentiating the previous expression according
to ϵσ2 , we gather:

∂2lp(X,
[
ϵX1 ; 0

]
, [0; ϵσ2 ])

∂ϵX1 ∂ϵ
σ
2

=
(
LR
Fi(X)

)⊤ ∂
(
σ2 exp (ϵσ2 )

)−1

∂ϵσ2
Log∨

G′

(
Fi(XExp∧

G

(
ϵX1
)
)−1Zi

)
(29)

By using the fact that:

∂
(
σ2 exp (ϵσ2 )

)−1

∂ϵσ2

∣∣∣∣∣
ϵσ2=0

=
1

σ2
, (30)

we deduce that:

∂2lp
(
X,
[
ϵX1 ; 0

]
, [0; ϵσ2 ]

)
∂ϵX1 ∂ϵ

σ
2

∣∣∣∣∣
ϵX1 =0,ϵσ2=0

=

− 1

σ2

(
LR
Fi(X)

)⊤
ψG′(Log∨

G′

(
Fi(X)−1Zi

)
)⊤ Log∨

G′

(
Fi(X)−1Zi

)
(31)

Then, by taking the expected value, we yield:

E

(
∂2lp

(
X, ϵX1 , ϵ

σ
2

)
∂ϵX1 ∂ϵ

σ
2

)∣∣∣∣∣
ϵX1 =0,ϵσ2=0

= − 1

σ2
×

E
((

LR
Fi(X)

)⊤
ψG′(Log∨

G′

(
Fi(X)−1Zi

)
)⊤ Log∨

G′

(
Fi(X)−1Zi

) )
(32)

Note that Js is different the information matrix of σ2

in the case where it is treated as an Euclidean parameter
in R. It is noteworthy that the well known result for the
standard conditional signal model [1-5], that is, an asymptotic
uncoupling between the estimation of the noise power σ2 and
the remaining parameters, is still valid for LGs.

IV. SIMULATION RESULTS

To illustrate the proposed bound, we consider a set of
Euclidean observations {zi}Ni=1 described by the following
model:

zi = Rpi + p+ ni ni ∼ N (0, σ2I3×3), (33)

where pi ∈ R3. R ∈ SO(3) and p ∈ R3 are respectively a
rotation and a translation parameter. It can be written under
the compact form:

zi = ΠX
[
p⊤
i , 1

]⊤
+ ni. (34)

with X =

[
R p

01×3 1

]
∈ G = SE(3) and can be seen as

an Euclidean simplification of the model (4) where G′ = R3,
Zi = zi, Fi(X) = ΠX

[
p⊤
i , 1

]⊤
, ψG′(.) = I3×3. In this

case, the ISB formula on X(a) is given by:

J (a) =

 1

σ2

N∑
i=1

J
(i)
X J

(i)
X

⊤
0p×1

01×p
3N

2

 , (35)

with

J
(i)
X = [Π XG1 pi, . . . ,ΠXG6 pi] , (36)

and {Gl}6l=1 a basis of the Lie algebra of SE(3).
In order to illustrate numerically the proposed ICRB, the

bound associated to (13) is simulated with two values of σ2 =
0.1 and σ2 = 0.6. The points {pi}Ni=1 are generated with the
following formula:

pi ∼ NR3(pm, σ
2
m I3×3) ∀i ∈ {1, . . . N}, (37)

where pm = [1, 1, 1]⊤ and σm = 0.1. In order to evaluate the
trace of the IMSE, we approximate it by Monte Carlo,

1

Nmc

Nmc∑
i=1

∥∥∥Log∨
G′

(
X(a)−1

(
X̂(a)

)
i

) ∥∥∥2 ,
where Nmc is the number of realizations of the algorithm

and
(
X̂(a)

)
i

the estimator for the i-th realization in the ML
sense. Such estimator is built with a Gauss-Newton algorithm
dedicated to LGs [24] and σ2 is estimated at each iteration l
by its empirical estimator:

σ2 (l)
=

1

N − 1

N∑
i=1

∥zi −ΠX(l)
[
p⊤
i , 1

]⊤ ∥2, (38)

where X(l) is the estimation of X at iteration l.
In Figures 1 and 2, we draw the evolution of the trace of the

ICRB superimposed to the trace of the IMSE as function of the



number of observations. We remark that the latter converges to
the proposed ICRB which shows the consistency of the latter.
Furthermore, we observe that the convergence is faster when
σ2 = 0.12 than σ2 = 0.62, which is a relevant behaviour in
line with the well-known behaviour of the MLE in the the
Gaussian Euclidean case.

0 50 100 150
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0.5

1

1.5

2

2.5

Fig. 2. Evolution of the proposed IMSB and IMSE for σ2 = 0.12 (Nmc =
1000)

0 50 100 150

0
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10

15

20

25

Fig. 3. Evolution of the proposed IMSB and IMSE for σ2 = 0.62.(Nmc =
1000))

V. CONCLUSIONS

In this article, we have derived an intrinsic Slepian-Bangs
formula applicable to Lie groups, particularly when dealing
with estimation problems involving unknown diagonal co-
variance matrices. The establishment of this bound involved
harnessing the inherent Lie group structure of the covariance
matrix space, leading to the identification of a parameter
within the product of two Lie groups. Through this approach,
we formulated a closed-form expression, for the Wahba’s
problem, commonly used in signal processing problems. The
implications of this work are extensive. Firstly, a relevant per-
spective for further exploration involves extending to the case
where the covariance matrix is full. Secondly, a challenging
yet pivotal endeavor is the adaptation of this framework for
dynamic parameters. This is particularly crucial in the context
of tracking problems associated with Lie groups, where the
covariance matrix of the process model remains unknown.
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[12] S. Labsir, A. Renaux, Vilà-Valls J., and Chaumette E., “Barankin,
McAulay-Seidman and Cramér-Rao Bounds on Matrix Lie Groups,” p.
04018005, 06 2018.

[13] E. W. Barankin, “Locally best unbiased estimates,” Annals of Mathe-
matical Statistics, vol. 20, pp. 477–501, 1949.
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